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Abstract 12 

It is necessary to examine the membrane dynamics of the neuron under ischemic 13 
conditions to understand the physiological changes that occur during metabolic 14 
perturbations. This would have far-reaching effects on exploring the brain 15 
metabolic activity following trauma. Any tissue in the body which has a 16 
metabolic demand requires the substrates for metabolism to be delivered, 17 
typically by the circulatory system. Of these substrates, molecular oxygen 18 
provides a means for cells to undergo aerobic respiration, which provides an 19 
abundance of ATP for further cellular activity. Our model is based on the single 20 
neuron approximation of the energy depleted state which exists under ischemic 21 
conditions. The original model was proposed by Zandt, first author of the 22 
reference paper Zandt et al. “Neural Dynamics during Anoxia and the ‘Wave of 23 
Death’”. This model features the dynamics of a single neuron operating under 24 
reduced depolarization conditions as a result of dynamic changes in the 25 
membrane potential and equilibrium concentrations of Na+ and K+ as a result of 26 
the reduced capacity of the ATP pump. The model we will be considering is 27 
strictly Hodgkin Huxley, since we need to consider the individual movements of 28 
sodium and potassium, and reduced models often eliminate the distinction 29 
between these variables to apply dimensionality reduction. For the small model 30 
simulations, we will evaluate dynamics of one and two neuron networks under 31 
ischemic conditions. In addition, we will investigate the effects of restoration of 32 
oxygen and glucose on our ischemic model to investigate the vitality of the 33 
neuron post-ischemia. 34 

1 Introduction 35 

 36 

Neurons are highly aerobic cells, which is why they are highly susceptible to irreparable 37 

damage during situations where their Oxygen supply is reduced or halted, called ischemia. If these 38 

conditions were to occur in the brain, such as in the case of a stroke, it is understandable that the 39 

result would be catastrophic. Currently the clinical treatment for acute & chronic ischemia is to 40 

return blood flow to the affected area as soon as possible. It is necessary to understand the effect 41 

of ischemia on Neurons and to learn at what point the damage done to the brain tissue is 42 

irreversible.  43 

 44 

1 .1  Aerob ic  Demand of  Neurons  45 



Neurons aerobic demand stems from their need to produce a usable form of energy, namely 46 

ATP, to perform maintenance and synaptic functions. This process depends on the circulatory 47 

system to provide molecular oxygen to the neurons so that they can undergo aerobic respiration, 48 

the process by which ATP is produced. A large volume of ATP is needed by neurons, because 49 

their NA+/K+ restoring pumps require ATP to restore membrane potential after every action 50 

potential conducted down the axon. Ischemia depletes the oxygenation of neurons which prevents 51 

large-scale generation of ATP. Without this restorative pump the neuron ceases to function 52 

properly. 53 

 54 

1 .2   I schemic  Condi t ions  and  the  Wave  Death  55 
 56 

The negative effects of oxygen and glucose deprivation due to ischemia are apparent 57 

almost immediately after blood flow is cut off. This dysfunction was physiologically observed 58 

using electroencephalogram (EEG) as an increase in slow wave activity followed by complete 59 

cessation of activity. A slow wave lasting approximately 5–20 seconds appears after half a minute 60 

of electrocerebral silence. This wave was named the “Wave of Death” by Zandt, the first author of 61 

the reference paper Zandt et al. “Neural Dynamics during Anoxia and the ‘Wave of Death’”. It is 62 

thought to reflect the synchronous death of brain neurons. 63 

 64 

2 Methods and Results  65 

  66 

2 .1  S ing le  neurona l  response  to  comple te  Oxygen -Glucose  depr ivat ion  67 

(OGD)  68 

 69 

Python was used to model the action potential propagation and ion dynamics in a single Hodgkin-70 

Huxley neuron under complete metabolic deprivation. We chose to start at the single neuronal 71 

level to try and replicate the “Wave of Death” phenomenon reported by van Rijn et al, PLoS One 72 

6, e16514, 2011[1], wherein a slow depolarizing wave was observed in rats after euthanization. 73 

The authors hypothesized that this phenomenon could potentially serve as a biomarker for 74 

irreversible damage to the neuron. Using the Hodgkin-Huxley neuronal model, we modeled the 75 

underlying biophysical mechanism behind the slow depolarizing membrane potential. The 76 

Cressman model [2] was used to the estimate the ion dynamics of sodium, potassium and chloride 77 

ions under severe duress following oxygen-glucose deprivation. 78 

𝐶
𝑑𝑉

𝑑𝑡
=  −𝐼𝑁𝑎(𝑚∞(𝑉), ℎ, 𝑉 − 𝐸𝑁𝑎) − 𝐼𝐾(𝑛, 𝑉 − 𝐸𝐾) − 𝐼𝐶𝑙(𝑉 − 𝐸𝐶𝑙) 79 

𝑤ℎ𝑒𝑟𝑒 𝐼𝑁𝑎, 𝐼𝐾 𝑎𝑛𝑑 𝐼𝐶𝑙 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑑𝑖𝑢𝑚, 𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚 𝑎𝑛𝑑 𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 80 

 81 

The Cressman model used assumes dynamic intra-and extra-cellular concentrations for sodium, 82 

potassium and chloride ions. 83 
𝑑[𝑁𝑎]𝑖
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) 87 

𝐼𝑑 =∈ ([𝐾]𝑒 − 𝑘∞) 88 

Apart from the ionic currents originating due to concentration gradients, we included 3 other 89 

sources of current namely Sodium-Potassium ATPase current (𝐼𝑝), glial current (𝐼𝑔) which serve 90 

as reservoir for extracellular potassium and diffusion current (𝐼𝑑) of the glial potassium into the 91 

blood. We also included a factor (β) which includes the amount of volume occupied by a neuron 92 



in relation to the extracellular volume and a conversion factor to convert the current terms to 93 

concentration (
𝐴

𝑉𝐹
). The rate of chloride ions were set at zero based on the average chloride 94 

migration in the cerebrospinal fluid of healthy human beings [3]. G signifies glial buffering rat and 95 

Є is diffusion rate. 96 

Steady state value of variables is [4]: 97 

Variable  Steady  state  units  

Vm  -68  mV  

[K]i  139  mmol  

[K]e  3.8  mmol  

[Na]i  20  mmol  

[Na]e  144  mmol  

[Cl]i  6  mmol  

[Cl]e  130  mmol  

 98 

 99 
Figure : Membrane potential prior to complete anoxia shows a normal waveform exhibited by HH 100 

Neurons 101 

 102 

Conditions for modeling complete OGD 103 

Complete OGD is simulated by setting the pump current and the potassium uptake current by glial 104 

cells to zero. Due to this, the diffusion of potassium into the blood is also zero [4] 105 



Due to this the ion dynamics vary as: 106 

                                                             107 
Where x is sodium, potassium or chloride ions. 108 

  109 
Figure: Slow depolarization of membrane potential following complete OGD. The initial spike is 110 

the application of external current (I_ext) of 1.6 µA/cm^2. 111 

The potassium efflux causes the mean membrane potential to increase from around -68 mV to -20 112 

mV. The stability of the membrane potential to -20 mV occurs due to the balancing of the 113 

increased potassium channels by the leak channels and thus negates the imbalance in the 114 

electrochemical gradient. 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 



Figure: The sudden spike in membrane potential following severe anoxia occurs due to the 135 

positive feedback loop that forms after impairment of the sodium potassium ATPase pump. 136 

 137 

This is similar to the EEG observations by van Rijn et al.[1] 138 

 139 
In order to simulate the effects of ischemia on larger neuron networks, we attempted to 140 

synapse Hodgkin Huxley neurons with dynamic Nernst potentials. We increased the complexity of 141 

the ischemic neuronal system as far as the limitations of our coding environment in python would 142 

allow. However, due to the time-course of events taking place and the relatively limited computing 143 

power at our disposal, we began with a simple two neuron excitatory unidirectional synapse 144 

connecting an upstream neuron with a driving current to a downstream neuron without one.  145 

 146 

 147 
Figure: Simple two-neuron excitatory synapsing motif 148 

 149 

 With the initial simulations of the neuronal system, we found some interesting behavior 150 

in the downstream neuron. As was expected, the excitatory synapse fully functioned in stimulating 151 

the downstream neuron during the wave of death in the upstream neuron. For a brief period of 152 

time, the downstream neuron, as is seen in the figure below, ceases firing, obviously due to the 153 

lack of upstream activity. However, as time progresses, the downstream neuron begins firing 154 

continuously, seemingly without any spiking stimulus from the upstream neuron. 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 
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Figure: Neuron B (Downstream) Membrane potential during and immediately after i  schemic 172 

onset 173 

 174 

We determined this problem to be a mathematical one rather than a biological one, 175 

residing in the formulation of the differential equations used to update the membrane potential. As 176 

the membrane potential equilibrates in the upstream neuron, it most likely achieves a value that is 177 

above the reversal potential built into the driving equation for the synapse, causing the synapse to 178 

continuously fire, and thus stimulate the downstream neuron at every time point we compute. It is 179 

important to note that the ischemic phenomena being considered occur over a time course of 60 180 

seconds in this particular simulation, meaning that 60,000 milliseconds are simulated. Continuous 181 

spiking during the ischemic-equilibrated phase of the upstream neuron means that the downstream 182 

neuron will only continue to spike at this rate as long as the membrane potential remains elevated, 183 

making it both disadvantageous computationally and pointless to further simulate neuronal 184 

dynamics after this point. In order to force the simulation to run, specific settings were imposed on 185 

the differential equation solver being used to optimize it slightly more for the increased stiffness of 186 

the problem.  187 

 188 

The final step in the simulations was to determine the vitality of our mathematical 189 
models after the ischemic conditions had been placed into effect transiently, and then 190 
removed, thus allowing the system to either return to its previous, stable equilibrium, or 191 
attain a new resting state. Our model simulated some rather interesting results regarding 192 
these two test conditions.  193 

In the most extreme cases of ischemia, our model encountered instabilities when we 194 
attempted to restore oxygen and glucose to the cell in the form of reactivation of the 195 
corresponding ionic currents. Namely, the dynamic Nernst reversal potentials attempted to 196 
calculate based on negative membrane potentials, as given by our differential equations, 197 
resulting in a domain error. Though there is no concrete evidence linking this phenomenon to 198 
irreversible cell damage, it is interesting to note that our model does not support reversible 199 
membrane dynamics after ischemia has persisted for too long. 200 

Therefore, in order to gauge degrees of recovery post-ischemia, we began with a 201 
very short ischemic time window, on the order of 30 seconds.  202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

Figure: Restoration of membrane potential after Ischemic onset for a small time duration.   216 

 217 

As is evident in the diagram, the ischemic conditions persist for only a short time 218 
before the re-introduction of oxygen and glucose allows the membrane to return to its resting 219 



state. The first spiking region of the diagram above is the beginning of the wave of death, 220 
concurrent with the onset of anoxia. The second spiking region corresponds to a driving 221 
current being applied to the neuron. As we can see, the neuron has retained its spiking 222 
character and the membrane potential is holding steady at the previously maintained resting 223 
potential. 224 

We found, after some experimentation, that the maximum time which our model 225 
allowed for partial membrane recovery was after approximately 50 seconds of simulation 226 
time. At the 50 second mark, the neuron is still able to recover relatively quickly, over the  227 
course of a few seconds, but there is a marked positive drift in the resting membrane 228 
potential after it is achieved. The spiking behavior of the neuron is apparently retained, as is 229 
evident in the figure below with an applied current at 600 seconds. However, the long term 230 
effects of the membrane potential drift need to be further investigated to evaluate whether or 231 
not the neuron will have viability issues in the future. 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

Figure: Maximum Ischemic duration for which spiking recovery was possible  245 

4 Conclusion 246 

 247 

Single neuron dynamics in HH neurons reveal that the EEG phenomenon of a slow depolarizing 248 

wave in complete anoxic conditions occurs due to the huge efflux of potassium. However, this 249 

process is not necessarily a biomarker of irreversible damage and may be reversed upon activation 250 

of the sodium-potassium pumps. This can occur, mathematically, during a limited window after 251 

the onset of ischemia, after which other biological factors, such as apoptotic signaling and necrosis 252 

must be taken into consideration. The network dynamics of ischemic neuron must be optimized, 253 

since the current mathematical model does not support simulation on a larger scale. Numerical 254 

approximations of the dynamics of the ion concentrations could be used to simulate the wave of 255 

death in a much more computationally feasible manner. However, preliminary tests indicate that 256 

the wave of death will have a significant effect on the membrane potentials of downstream 257 

neurons, and thus cascade through heavily linked neuron networks, likely leading to phenomena 258 

such as post-stroke seizures and epilepsy.  Nevertheless, in spite of its mathematical instability 259 

under certain circumstances, we have successfully implemented a functional Hodgkin Huxley 260 

model of ischemia which can be further optimized and applied in subsequent studies. 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 



5 References   269 

 [1] van Rijn CM, Krijnen H, Menting-Hermeling S, Coenen AML (2011) Decapitation in rats: 270 

latency to unconsciousness and the ‘wave of death’. PLos One 6: e16514. 271 

[2] Barreto, E., & Cressman, J. (2011). Ion concentration dynamics as a mechanism for neuronal 272 

bursting. 273 

[3] Johanson, C., Duncan, J., Klinge, P., Brinker, T., Stopa, E., & Silverberg, G. (2008). 274 

Multiplicity Of Cerebrospinal Fluid Functions: New Challenges In Health And 275 

Disease. Cerebrospinal Fluid Research, 5(10), 1-32. Retrieved December 20, 2014 276 

[4] Zandt, B., Haken, B., Dijk, J., Michel J. A. M. Van Putten, & Baud, O. (2011). Neural 277 

Dynamics during Anoxia and the “Wave of Death”. PLoS ONE, E22127-E22127. 278 

 279 

 280 

6 Code Index  281 

#Runmodel.m 282 

from __future__ import division 283 

import numpy as np 284 

from math import exp,log 285 

from scipy.integrate import odeint 286 

import pylab as plt 287 

import sys 288 

 289 

class P: 290 

    Tanoxia = 0 291 

 292 

 293 

def FullModel(y,t): 294 

    if (t > p.Tanoxia[0] and t < p.Tanoxia[1]): 295 

        Apump = p.Ap 296 

        Adiff = p.Ad  297 

        Clconst = False 298 

    else: 299 

        Apump = 1 300 

        Adiff = 1 301 

        Clconst = True 302 

     303 

    if ((t > p.Tcurr[0]) and (t<p.Tcurr[1])):   #%inject current when specified  304 

        Iapp = p.Icurr #; %[uA/cm^2] 305 

    elif((t > p.Tcurr[2]) and (t<p.Tcurr[3])): 306 

        Iapp = p.Icurr 307 

    else: 308 



        Iapp = 0 309 

    # Gates 310 

    #  alpha_n = 0.01 * (y[0]+34.0)/( 1.0 - exp(-0.1 * (y[0])+34.0)) #; %[no units] 311 

    alpha_n = 0.01*(y[0]+34.0)/(1.0-exp(-0.1*(y[0]+34.0))) 312 

    beta_n = 0.125 * exp(-(y[0]+44.0)/80.0) 313 

    alpha_m = 0.1 * (y[0]+30.0)/( 1.0 - exp(-0.1 * (y[0]+30.0)) ) 314 

    beta_m = 4.0 * exp(-(y[0]+55.0)/18.0) 315 

    alpha_h = 0.07 * exp(-(y[0]+44.0)/20.0) 316 

    beta_h = 1.0/( 1.0 + exp(-0.1 * (y[0]+14.0)) ) 317 

    m_inf = alpha_m/(alpha_m + beta_m)     318 

    #% Nernst potentials 319 

    E_k = 26.64 * log(y[3]/y[6])  #;       %[mV] 320 

    E_na = 26.64 * log((y[7]/y[4]))     321 

    E_cl = 26.64*log(y[8]/y[9]) 322 

    #% Currents     323 

    Ina = p.g_na*(m_inf**3)*y[2]*(y[0]-E_na) + p.g_naL*(y[0]-E_na) #;  % [mS/cm^2 * mV 324 

= uA/cm^2] 325 

    Ik = (p.g_k*y[1]**4)*(y[0]-E_k) + p.g_kL*(y[0]-E_k) #;  326 

    Icl = p.g_clL*(y[0]-E_cl) 327 

    Ipump = Apump*(p.rho/(1.0+exp((25.0-y[4])/3.0)))*(1/(1+exp(5.5-y[3]))) #;   % [mM/s] 328 

    Iglia = Apump*(p.glia/(1.0+exp((18.0-y[3])/2.5))) #;                        % [mM/s] 329 

    Idiffusion = Adiff*p.epsilon*(y[3]-p.kbath)      330 

 331 

 332 

    dydx = np.zeros(11) 333 

    dydx[0] = (1/p.Cm)*(-Ina -Ik -Icl-0*Ipump+Iapp) 334 

    dydx[1] = p.phi*(alpha_n*(1-y[1])-beta_n*y[1]) 335 

    dydx[2] = p.phi*(alpha_h*(1-y[2])-beta_h*y[2]) 336 

    dydx[3] = (1/p.tau)*(p.gamma*p.beta*Ik -2.0*p.beta*p.gamma*Ipump -Iglia -Idiffusion) 337 

    dydx[4] = (1/p.tau)*(-p.gamma*Ina -3.0*p.gamma*Ipump) 338 

    dydx[5] = 0 339 

    dydx[6] = -(1/p.tau)*(p.gamma*Ik -2.0*p.gamma*Ipump) 340 

    dydx[7] = (1/p.tau)*(p.gamma*p.beta*Ina +3.0*p.beta*p.gamma*Ipump) 341 

    if Clconst: 342 

        dydx[8] = 0 343 

        dydx[9]= 0 344 

    else: 345 



        dydx[8] = (1/p.tau)*(p.gamma*Icl) 346 

        dydx[9]= -dydx[8]*p.beta 347 

 if(dydx[0] + y[0] > -21 and y[0]<-21): 348 

  dydx[10] = t-y[10] 349 

 else: 350 

  dydx[10] = 0 351 

    return dydx 352 

 353 

def mainmodel(T,y0): 354 

    p.rcell = 7e-6   #;           % [m], radius of spherical cell  355 

    p.F = 96485.3399  #;         % [C/mol], Faraday constant 356 

    p.gamma = 1e-2*3/p.rcell/p.F   #; % [mM cm^2 /(uA s)] conversion from current to 357 

concentration change, gamma = A/(F*V) = 3/(rcell*F) 358 

    p.tau = 1e3  #;           % conversion factor seconds -> ms 359 

    p.beta = 2.0  #;             % ratio intra/extracellular volume;  360 

    p.rho = 1.25/p.gamma  #;       % 1.25 mM/s / (mM cm^2 /(uA s)) = uA/cm^2 , pump 361 

current scaling 362 

    p.glia = 200.0/3.0  #;       % mM/s, "pump rate" of [K+]e by glial cells  363 

    p.epsilon = 4.0/3.0  #;      % [1/s] diffusion rate  364 

    p.kbath = 4.0  #;            % [mM], concentration K+ of "bath" 365 

    p.Cm = 1.0   #;               % [uF / cm^2],  membrane capacitance  366 

    p.g_na = 100.0  #;           % [mS / cm^2],  maximum gate conductances  367 

    p.g_naL = 0.0175  #;         % [mS / cm^2],  leak conductance 368 

    p.g_k = 40.0   #;             % [mS / cm^2] 369 

    p.g_kL = 0.05  #;            % [mS / cm^2] 370 

    p.g_clL = 0.05  #;           % [mS / cm^2] 371 

    p.phi = 3.0  #;              % [1/ms],       gate time constant  372 

    tspan = np.arange(0,T+0.1,0.1) 373 

    Sol = odeint(FullModel, y0,tspan,rtol = 1e-3, hmax = 1e3) 374 

    return Sol 375 

 376 

 377 

y0 = [-67.7966,0.0661,0.9804,3.8280,20.0001,0,138.7929,143.9961,6.0,130.0,0]  378 

#y0p = [-50.0,0.08553,0.96859,7.8,15.5,0,140,144,6,130] 379 

p = P() 380 

p.Tanoxia = np.array([500,550])*1e3  #onset of anoxia 381 

p.Ap = 0 382 

p.Ad = 0 383 



p.Tcurr = np.array([100,101, 600,601])*1e3 # time between current is injected  384 

p.Icurr = 1.6 # [uA/cm^2] 385 

T = 2000*1e3 # 1000*1e3 #[ms] 386 

 387 

Sol = mainmodel(T,y0); 388 

 389 

voltage = Sol[:,0] 390 

temptspan = np.arange(0,T+0.1,0.1) 391 

 392 

deltime = Sol[:,10] 393 

spkfrq = [] 394 

spkfrq.append(0) 395 

for i in range(len(deltime)-1): 396 

 diff = (deltime[i+1]-deltime[i])/1000 397 

 spkfrq.append(diff) 398 

 399 

 400 

plt.figure() 401 

plt.plot(temptspan*1e-3,voltage) 402 

plt.title('Ischemic Restoration T = 50 seconds - I_ext = 1.6 uA/cm^2') 403 

plt.ylabel('Membrane Potential (mV)') 404 

plt.xlabel('Time (s)') 405 

plt.show() 406 

sys.exit(0) 407 


